Weighted Consensus Clustering
نویسندگان
چکیده
Consensus clustering has emerged as an important extension of the classical clustering problem. We propose weighted consensus clustering, where each input clustering is weighted and the weights are determined in such a way that the final consensus clustering provides a better quality solution, in which clusters are better separated comparing to standard consensus clustering. Theoretically, we show that a reformulation of the wellknown L1 regularization LASSO problem is equivalent to the weight optimization of our weighted consensus clustering, and thus our approach provides sparse solutions which may resolve the difficult situation when the input clusterings diverge significantly. We also show that the weighted consensus clustering resolves the redundancy problem when many input clusterings correlate highly. Detailed algorithms are given. Experiments are carried out to demonstrate the effectiveness of the weighted consensus clustering.
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملConsensus clustering approach to group brain connectivity matrices
A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node ...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملWeighted Clustering Ensembles
Cluster ensembles offer a solution to challenges inherent to clustering arising from its ill-posed nature. Cluster ensembles can provide robust and stable solutions by leveraging the consensus across multiple clustering results, while averaging out emergent spurious structures that arise due to the various biases to which each participating algorithm is tuned. In this paper, we address the prob...
متن کاملFast Mining of Temporal Data Clustering
Temporal data clustering provides underpinning techniques for discovering the intrinsic structure and condensing information over temporal data. In this paper, we present a temporal data clustering framework via a weighted clustering produced by initial clustering analysis on different temporal data representations. In the existing system a novel weighted function guided by clustering validatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008